Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Curr Opin Microbiol ; 78: 102448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447313

RESUMO

Streptomyces are a large genus of multicellular bacteria best known for their prolific production of bioactive natural products. In addition, they play key roles in the mineralisation of insoluble resources, such as chitin and cellulose. Because of their multicellular mode of growth, colonies of interconnected hyphae extend over a large area that may experience different conditions in different parts of the colony. Here, we argue that within-colony phenotypic heterogeneity can allow colonies to simultaneously respond to divergent inputs from resources or competitors that are spatially and temporally dynamic. We discuss causal drivers of heterogeneity, including competitors, precursor availability, metabolic diversity and division of labour, that facilitate divergent phenotypes within Streptomyces colonies. We discuss the adaptive causes and consequences of within-colony heterogeneity, highlight current knowledge (gaps) and outline key questions for future studies.


Assuntos
Streptomyces , Streptomyces/genética , Fenótipo
2.
Front Trop Dis ; 42024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38500783

RESUMO

The parasitic worm-derived immunomodulator, ES-62 rescues defective levels of IL-10-producing regulatory B cells (Bregs) and suppresses chronic Th1/Th17-driven inflammation to protect against joint destruction in the mouse collagen-induced arthritis (CIA) model of rheumatoid arthritis. Such autoimmune arthritis is also associated with dysbiosis of the gut microbiota and disruption of intestinal barrier integrity. We recently further exploited the CIA model to show that ES-62's prevention of joint destruction is associated with protection of intestinal barrier integrity and normalization of the gut microbiota, thereby suppressing the gut pathology that precedes the onset of autoimmunity and joint damage in CIA-mice. As the status of the gut microbiota impacts on immune responses by influencing haematopoiesis, we have therefore investigated whether ES-62 harnesses the homeostatic mechanisms regulating this gut-bone marrow (BM) axis to resolve the chronic inflammation promoting autoimmunity and joint destruction in CIA. Reflecting this, ES-62 was found to counteract the BM myeloid/lymphoid bias typically associated with chronic inflammation and infection. This was achieved primarily by ES-62 acting to maintain the levels of lymphoid lineages (B220+ and CD3+ cells) observed in naïve, healthy mice but lost from the BM of CIA-mice. Moreover, ES-62's ability to prevent bone-destroying osteoclastogenesis was found to be associated with its suppression of CIA-induced upregulation of osteoclast progenitors (OCPs) in the BM. Critically, and supporting ES-62's targeting of the gut-BM axis, this rewiring of inflammatory haematopoiesis was lost in mice with a depleted microbiome. Underlining the importance of ES-62's actions in restoring steady-state haematopoiesis, the BM levels of B and T lymphoid cells were shown to be inversely correlated, whilst the levels of OCPs positively correlated, with the severity of joint damage in CIA-mice.

3.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38329407

RESUMO

tGrowth of microorganisms and interpretation of growth data are core skills required by microbiologists. While science moves forward, it is of paramount importance that essential skills are not lost. The bacterial growth curve and the information that can gleaned from it is of great value to all of microbiology, whether this be a simple growth experiment, comparison of mutant strains or the establishment of conditions for a large-scale multi-omics experiment. Increasingly, the basics of plotting and interpreting growth curves and growth data are being overlooked. This primer article serves as a refresher for microbiologists on the fundamentals of microbial growth kinetics.


Assuntos
Microbiologia de Alimentos , Cinética
4.
Microbiology (Reading) ; 170(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261525

RESUMO

Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.


Assuntos
Candida albicans , Infecções Estafilocócicas , Hifas , Staphylococcus aureus , Imagem com Lapso de Tempo , Biofilmes
5.
Microbiology (Reading) ; 170(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289644

RESUMO

We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, Bacillus subtilis and Streptomyces coelicolor, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.


Assuntos
Bacillus subtilis , Carbono , Interações Microbianas , Microscopia de Fluorescência , Solo
6.
Biosci Rep ; 44(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38131184

RESUMO

The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.


Assuntos
Compostos de Amônio , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
7.
PLoS Biol ; 21(10): e3002329, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847672

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside of the intestine and are a major causative agent of urinary tract infections. Treatment of these infections is increasingly frustrated by antimicrobial resistance (AMR) diminishing the number of effective therapies available to clinicians. Incidence of multidrug resistance (MDR) is not uniform across the phylogenetic spectrum of E. coli. Instead, AMR is concentrated in select lineages, such as ST131, which are MDR pandemic clones that have spread AMR globally. Using a gnotobiotic mouse model, we demonstrate that an MDR E. coli ST131 is capable of out-competing and displacing non-MDR E. coli from the gut in vivo. This is achieved in the absence of antibiotic treatment mediating a selective advantage. In mice colonised with non-MDR E. coli strains, challenge with MDR E. coli either by oral gavage or co-housing with MDR E. coli colonised mice results in displacement and dominant intestinal colonisation by MDR E. coli ST131. To investigate the genetic basis of this superior gut colonisation ability by MDR E. coli, we assayed the metabolic capabilities of our strains using a Biolog phenotypic microarray revealing altered carbon metabolism. Functional pangenomic analysis of 19,571 E. coli genomes revealed that carriage of AMR genes is associated with increased diversity in carbohydrate metabolism genes. The data presented here demonstrate that independent of antibiotic selective pressures, MDR E. coli display a competitive advantage to colonise the mammalian gut and points to a vital role of metabolism in the evolution and success of MDR lineages of E. coli via carriage and spread.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Camundongos , Filogenia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Variação Genética , Metabolismo dos Carboidratos/genética , Mamíferos
8.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37450375

RESUMO

The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.


Assuntos
Compostos de Amônio , Animais , Humanos , Compostos de Amônio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/química , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/metabolismo , Fungos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Adv Microb Physiol ; 83: 309-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37507161

RESUMO

Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.


Assuntos
Produtos Biológicos , Redes e Vias Metabólicas/genética , Antibacterianos , Ecologia , Família Multigênica , Vias Biossintéticas/genética
10.
PLoS Genet ; 19(4): e1010737, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099600

RESUMO

Diphtheria is a respiratory disease caused by Corynebacterium diphtheriae. While the toxin-based vaccine has helped control outbreaks of the disease since the mid-20th century there has been an increase in cases in recent years, including systemic infections caused by non-toxigenic C. diphtheriae strains. Here we describe the first study of gene essentiality in C. diphtheriae, providing the most-dense Transposon Directed Insertion Sequencing (TraDIS) library in the phylum Actinobacteriota. This high-density library has allowed the identification of conserved genes across the genus and phylum with essential function and enabled the elucidation of essential domains within the resulting proteins including those involved in cell envelope biogenesis. Validation of these data through protein mass spectrometry identified hypothetical and uncharacterized proteins in the proteome which are also represented in the vaccine. These data are an important benchmark and useful resource for the Corynebacterium, Mycobacterium, Nocardia and Rhodococcus research community. It enables the identification of novel antimicrobial and vaccine targets and provides a basis for future studies of Actinobacterial biology.


Assuntos
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Multiômica , Difteria/epidemiologia , Difteria/microbiologia , Surtos de Doenças , Biblioteca Gênica
11.
Rice (N Y) ; 16(1): 6, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739313

RESUMO

Plant growth-promoting endophytic (PGPE) actinomycetes have been known to enhance plant growth and mitigate plant from abiotic stresses via their PGP-traits. In this study, PGPE Streptomyces sp. GKU 895 promoted growth and alleviated salt tolerance of salt-susceptible rice cultivar IR29 by augmentation of plant weight and declined ROS after irrigation with 150 mM NaCl in a pot experiment. Transcriptome analysis of IR29 exposed to the combination of strain GKU 895 and salinity demonstrated up and downregulated differentially expressed genes (DEGs) classified by gene ontology and plant reactome. Streptomyces sp. GKU 895 induced changes in expression of rice genes including transcription factors under salt treatment which involved in growth and development, photosynthesis, plant hormones, ROS scavenging, ion transport and homeostasis, and plant-microbe interactions regarding pathogenesis- and symbiosis-related proteins. Taken together, these data demonstrate that PGPE Streptomyces sp. GKU 895 colonized and enhanced growth of rice IR29 and triggered salt tolerance phenotype. Our findings suggest that utilisation of beneficial endophytes in the saline fields could allow for the use of such marginal soils for growing rice and possibly other crops.

12.
J Microsc ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692253

RESUMO

We provide a brief review of the development and application of the Mesolens and its impact on microbiology. Microbial specimens such as infected tissue samples, colonies surfaces, and biofilms are routinely collected at the mesoscale. This means that they are relatively large multimillimetre-sized samples which contain microscopic detail that must be observed to answer important questions across various sectors. The Mesolens presents the ideal imaging method to study these specimens as no other optical microscope can thanks to its unique combination of low magnification and high numerical aperture providing large field-of-view, high-resolution imaging. We demonstrate the current applications of the Mesolens to microbial imaging and go on to outline the huge potential of the Mesolens to impact other key areas of microbiology.

13.
Biofilm ; 4: 100084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36254115

RESUMO

Nutrient-transporting channels have been recently discovered in mature Escherichia coli biofilms, however the relationship between intra-colony channel structure and the surrounding environmental conditions is poorly understood. Using a combination of fluorescence mesoscopy and a purpose-designed open-source quantitative image analysis pipeline, we show that growth substrate composition and nutrient availability have a profound effect on the morphology of intra-colony channels in mature E. coli biofilms. Under all nutrient conditions, intra-colony channel width was observed to increase non-linearly with radial distance from the centre of the biofilm. Notably, the channels were around 25% wider at the centre of carbon-limited biofilms compared to nitrogen-limited biofilms. Channel density also differed in colonies grown on rich and minimal media, with the former creating a network of tightly packed channels and the latter leading to well-separated, wider channels with defined edges. Our approach paves the way for measurement of internal patterns in a wide range of biofilms, offering the potential for new insights into infection and pathogenicity.

14.
Access Microbiol ; 4(5): acmi000358, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003359

RESUMO

We report the genome sequence of Streptomyces goldiniensis ATCC 21386, a strain which produces the anti-bacterial and anti-virulence polyketide, aurodox. The genome of S. goldiniensis ATCC 21386 was sequenced using a multiplatform hybrid approach, revealing a linear genome of ~10 Mbp with a G+C content of 71%. The genome sequence revealed 36 putative biosynthetic gene clusters (BGCs), including a large region of 271 Kbp that was rich in biosynthetic capability. The genome sequence is deposited in DDBJ/EMBL/GenBank with the accession number PRJNA602141.

15.
Appl Environ Microbiol ; 88(15): e0069222, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867559

RESUMO

The global increase in antimicrobial-resistant infections means that there is a need to develop new antimicrobial molecules and strategies to combat the issue. Aurodox is a linear polyketide natural product that is produced by Streptomyces goldiniensis, yet little is known about aurodox biosynthesis or the nature of the biosynthetic gene cluster (BGC) that encodes its production. To gain a deeper understanding of aurodox biosynthesis by S. goldiniensis, the whole genome of the organism was sequenced, revealing the presence of an 87 kb hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) BGC. The aurodox BGC shares significant homology with the kirromycin BGC from S. collinus Tϋ 365. However, the genetic organization of the BGC differs significantly. The candidate aurodox gene cluster was cloned and expressed in a heterologous host to demonstrate that it was responsible for aurodox biosynthesis and disruption of the primary PKS gene (aurAI) abolished aurodox production. These data supported a model whereby the initial core biosynthetic reactions involved in aurodox biosynthesis followed that of kirromycin. Cloning aurM* from S. goldiniensis and expressing this in the kirromycin producer S. collinus Tϋ 365 enabled methylation of the pyridone group, suggesting this is the last step in biosynthesis. This methylation step is also sufficient to confer the unique type III secretion system inhibitory properties to aurodox. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a significant global pathogen for which traditional antibiotic treatment is not recommended. Aurodox inhibits the ability of EHEC to establish infection in the host gut through the specific targeting of the type III secretion system while circumventing the induction of toxin production associated with traditional antibiotics. These properties suggest aurodox could be a promising anti-virulence compound for EHEC, which merits further investigation. Here, we characterized the aurodox biosynthetic gene cluster from Streptomyces goldiniensis and established the key enzymatic steps of aurodox biosynthesis that give rise to the unique anti-virulence activity. These data provide the basis for future chemical and genetic approaches to produce aurodox derivatives with increased efficacy and the potential to engineer novel elfamycins.


Assuntos
Aurodox , Streptomyces , Antibacterianos/farmacologia , Aurodox/farmacologia , Família Multigênica , Policetídeo Sintases/genética , Streptomyces/genética , Sistemas de Secreção Tipo III
16.
Microb Genom ; 8(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775972

RESUMO

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
17.
Curr Opin Microbiol ; 68: 102171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709553

RESUMO

The intimate linkage of ecology and evolution is central to our understanding of biodiversity. The traditional perspective was to separate these fields based on timescales, but rapid, contemporary evolution is widely accepted and perhaps even more so in microbial systems. The study of eco-evolutionary dynamics is advancing at great pace and microorganisms are at the forefront of emerging paradigms, driven by conceptual and technological advances, such that we can move beyond the widely studied eco to evo aspects of the field and develop our understanding of how microorganisms shape virtually all processes on the planet (evo to eco).


Assuntos
Evolução Biológica , Ecologia , Biodiversidade
18.
mBio ; 13(2): e0291321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35196127

RESUMO

Ammonium translocation through biological membranes, by the ubiquitous Amt-Mep-Rh family of transporters, plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of the pore of these transporters, forming the family's characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology on Escherichia coli AmtB, in silico molecular dynamics simulations, and in vivo yeast functional complementation assays, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs specificity in Amt-Mep-Rh transporters, but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We show that coexistence of both mechanisms in single Twin-His variants of yeast Mep2 transceptors disrupts the signaling function and so impairs fungal filamentation. These data support a signaling process driven by the transport mechanism of the fungal Mep2 transceptors. IMPORTANCE Fungal infections represent a significant threat to human health and cause huge damage to crop yields worldwide. The dimorphic switch between yeast and filamentous growth is associated with the virulence of pathogenic fungi. Of note, fungal Mep2 proteins of the conserved Amt-Mep-Rh family play a transceptor role in the induction of filamentation; however, the signaling mechanism remains largely unknown. Amt-Mep-Rh proteins ensure the specific scavenging of NH4+ through a mechanism relying on substrate deprotonation, thereby preventing competition and translocation of similar-sized K+. Our multidisciplinary approaches using E. coli AmtB, Saccharomyces cerevisiae, and Candida albicans Mep2 show that double variation of the family-defining Twin-His motif triggers a mechanistic switch from a specific transporter to an unspecific ion channel with both mechanisms still coexisting in single variants. Moreover, we show that this mechanistic alteration is associated with loss of signaling ability of Mep2, supporting a transport mechanism-driven process in filamentation induction.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Proteínas de Transporte de Cátions/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Translocação Genética
20.
Anal Chem ; 94(4): 2126-2133, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043638

RESUMO

SARS-CoV-2 diagnostic practices broadly involve either quantitative polymerase chain reaction (qPCR)-based nucleic amplification of viral sequences or antigen-based tests such as lateral flow assays (LFAs). Reverse transcriptase-qPCR can detect viral RNA and is the gold standard for sensitivity. However, the technique is time-consuming and requires expensive laboratory infrastructure and trained staff. LFAs are lower in cost and near real time, and because they are antigen-based, they have the potential to provide a more accurate indication of a disease state. However, LFAs are reported to have low real-world sensitivity and in most cases are only qualitative. Here, an antigen-based electrochemical aptamer sensor is presented, which has the potential to address some of these shortfalls. An aptamer, raised to the SARS-CoV-2 spike protein, was immobilized on a low-cost gold-coated polyester substrate adapted from the blood glucose testing industry. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times as short as 15 min on nasopharyngeal swab samples. This assay can readily be optimized for mass manufacture and is compatible with a low-cost meter.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Espectroscopia Dielétrica , Eletrodos , Humanos , RNA Viral , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...